Bioinformatics

Modeling of biological systems

Adrian E. Roitberg

University of Florida

ECAR2012 -Escuela de Computacion de Alto Rendimiento

Despues de un largo viaje de un mes y medio....

- Basic Principles
- Modern Simulations of Biomolecules
- Advanced Techniques

"everything that living things do can be understood in terms of the jiggling and wiggling of atoms."

Richard Feynman, 1963

Biology involves motion

- Biomolecules undergo conformational changes
- These can be difficult to probe with experiments
- Function arises from dynamics on a wide range of time scales

Biomolecular timescales

- Dynamics occur on timescales that vary over many orders of magnitude
- Most experimental data represents an average over time – know the limitations of your data!

SCRIPPS

Katherine Henzler-Wildman & Dorothee Kern. Dynamic personalities of proteins. Nature, December 2007

HIV-1 protease (HIV-PR)

Homodimer, 198aa

- 2 gly-rich flaps
- Cleaves gag, gag-pol polyproteins during maturation
- AIDS drug target (saquinavir, indinavir, etc.)
- Drug resistance can arise from remote mutations

Why run simulations?

- Models for time- or ensemble-averaged experimental observations
- Predictions: positive or negative
- Physical insight- why does it act this way?
- Connect structure and energy
- Nonphysical or impractical states: arbitrary chemistry, conditions, substrate-enzyme complex, etc.
- Test experimental assumptions

Why MD?

- Atoms move!
 - We may be interested in studying time dependent phenomena, such as molecular vibrations, phonons, diffusion, etc.
 - We may be interested in studying temperature dependant phenomena, such as free energies, anharmonic effects,
 - etc.
- Ergodic Hypothesis
 - Time average over trajectory is equivalent to an ensemble average.
 - Allows the use of MD for statistical mechanics studies.

Alternatives

- Monte Carlo
 - Can do thermal averages.
 - Hard to do time dependant things.
- Hybrid MD/MC
 - Bad MD as good MC.
 - Generate configurations using poor/cheap/fast MD but then evaluate contribution to ensemble average using MC.

Energy

Energy: any arrangement of atoms and molecules in the system has a particular energy and the energy varies as the positions of the atoms (electrons) and molecules change.

 $E \sim f$ (atomic positions)

The most stable conformation of a molecule is the one with the lowest energy, but it is not the only one we are interested in. Examples: n-butane

How do we Calculate the Energy?

- Quantum mechanics
 - Electrons are the smallest particle represented.
 - Solves the Schrödinger equation.
- Molecular mechanics
 - Atoms are the smallest particles.
 - Atoms are represented by balls.
 - Bonds are represented by strings.
 - "balls and springs" model

Force Fields

- Equations and parameters that relate the chemical structure and conformation to energy.
 E ~ f (atomic positions)
- FF used in molecular modeling are primarily designed to reproduce structural properties.
- A ff is usually designed to reproduce a given type of data (parameterized accordingly).
- Force fields are empirical, there is not a 'correct' energy function or parameters.

Types of Force Field

- Compromise between accuracy and computational efficiency.
- Transferability is necessary to ensure predictability.
 - Class I FF: simple potential energy function which limits transferability.
 - Class II FF: extended potential energy function, including cross terms. Increases transferability.

Increasing transferability can limit accuracy.

Common Force Fields

Class I

- CHARMM
- CHARMm (Accelrys)
- AMBER
- GROMOS
- OPLS
- ...

Class II

- CFF95 (Accelrys)
- MM3
- MMFF (Charmm, Macromodel, Moe,...)
- UFF
- Dreiding
- . . .

NOTE: There are often multiple versions of each of these force fields.

A Function for Energy?

Morse potential

$$E_{stretching} = D_e \cdot \{1 - \exp[-a(r - r_o)]\}^2$$

Harmonic potential (Hooke)

•Morse potential requires 3 parameters so computationally expensive and difficult to parameterize.

•Harmonic potential is usually good enough since most bonds remain within +/- 0.1 Angstroms of "optimum".

Angles

Dihedrals

Dihedrals Contd.

- Most of the variation in structure and energies is due to the interplay between torsional and non-bonded contributions.
- Almost always expressed as a cosine series expansion.

$$E_{torsion} = \sum_{1,4 \text{ pairs}} \mathbf{K}_{\phi} \left(1 - \cos(n\phi - \delta)\right)$$

- K is often referred to as the barrier height (misleading since other terms contribute to the barrier: non-bonded, etc...)
- n: multiplicity, number of minimum points.
- d: phase factor, determines when the torsion potential has its minimum value.

Example: Butane

Syn (Eclipsed) Dihedral Angle = 0, 360 degrees

Example: Butane

Non-Bonded Interactions: VDW

Electrostatics

Coulomb potential

$$E_{vdW} = \sum_{nonbonded pairs} \frac{q_i \cdot q_j}{\varepsilon \cdot r}$$

- point charge model
- no dipole-induced effects

Summary

The AMBER Force Field Equation

$$\begin{split} V\left(r^{n}\right) &= \sum_{bonds} K_{r}\left(r - r_{eq}\right)^{2} + \sum_{angles} K_{\theta}\left(\theta - \theta_{eq}\right)^{2} \\ &+ \sum_{dihedrals} \frac{V_{n}}{2} \Big[1 + \cos\left(n\phi - \gamma\right)\Big] + \sum_{i < j} \Bigg[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_{i}q_{j}}{\varepsilon_{r}R_{ij}}\Bigg] \end{split}$$

Note: 1-2 and 1-3 non-bond interactions are parameterized into the bond and angle terms. Dihedral term also includes some of the non-bond interaction.

1-4 EEL scaled by 1.21-4 VDW scaled by 2.0

From structure/parameters to Energy/Forces

Molecular Dynamics

Molecular Dynamics Simulations

... are simulations of the time evolution of a chemical system at atomic details described by an empirically derived classical potential function

need:

- a cartesian representation of the chemical system
- a potential function appropriate for the studied subject
- a propagator to simulate system time evolution
- efficient numerical algorithms

provide:

- a dynamic representation at the given temperature
- relative energies of conformers
- small scale conformational changes
- time dependent properties
- a description of noncovalent association

do NOT provide:

- chemical reactions
- quantum effects
- large barrier crossings
- precise energies and geometries
- unusual compounds

System: f (m, q, x, v, topology, V)

MD compared to other Modelling Techniques

Newtons Equations of Motion

Molecular Mechanics, 19th century style:

$$\vec{F}_i = -\frac{\partial V}{\partial \vec{r}_i} \qquad \vec{F}_i = m_i \vec{a}_i$$

$$x(t + \Delta t) \approx x(t) + \Delta t \left[\frac{dx}{dt}\right]_t + \frac{\Delta t^2}{2} \left[\frac{d^2x}{dt^2}\right]_t$$

Not really true at atomic scale, but often a good model with added empirical parameters

From structure/parameters to forces to dynamics

Atoms are Quantum no?

- It is difficult to accept that the behavior of atomistic systems, which behave according to quantum rather than classical laws, could be accurately described by the application of classical Newtonian mechanics.
- The justification for this can be made by considering the de Broglie expression for the thermal wavelength Λ

$$\Lambda = \sqrt{\frac{2\pi\hbar^2}{Mk_BT}}$$

- where T is the temperature and M is the atomic mass.
- The approximation of classical behavior holds if $\Lambda << \alpha$, where α is the mean nearest neighbor separation.
- This holds for 'heavy' liquid systems at all but the lowest temperatures, at which quantum effects become important.

Dynamics, Minimizations, Monte Carlo

No analytical solutions for interesting systems Molecular Dynamics Minimizations Monte Carlo $P(\Delta x) = \min(1, e^{(-\Delta E/kT)})$ $\Delta x = -\nabla V(x)$

Time Evolution Propagator

Numerical algorithms introduce a timestep and truncate the Taylor expansion at the second derivative of the positions, i.e. the accelerations/forces

Parameters

$$V(x) = \sum_{bonds} K_b (r - r_0)^2 + \sum_{angles} K_a (\phi - \phi_0)^2 + \sum_{dihedrals} \frac{K_d}{2} \left[1 + \cos(n\theta + \gamma) \right] + \sum_{i,j < i} \left(\frac{A}{r^{12}} - \frac{C}{r^6} + \frac{q_i q_j}{r} \right)^2$$

From the amber gaff.dat general atom forcefield:

AMBER General	Force Field f	or organio	c mol., a	add. info.	. at the end (June, 2003)		
c 12.01	0.616		Sp2 C ca	arbonyl gr	roup		
cl 12.01	0.360		Sp C				
c2 12.01	0.360		Sp2 C				
c3 12.01	0.878		Sp3 C				
ca 12.01	0.360		Sp2 C in pure aromatic systems				
cp 12.01	0.360		Head Sp2	2 C that c	connect two rings in biphenyl sys.		
cq 12.01	0.360		Head Sp2	2 C that c	connect two rings in biphenyl sys. identical to cp		
[]							
ha 1.008	0.135		H bonded	d to aroma	atic carbon		
hc 1.008	0.135	H bonded to aliphatic carbon without electrwd. group					
hn 1.008	0.161		H bonded to nitrogen atoms				
ho 1.008	0.135		Hydroxy	l group			
hp 1.008	0.135	H bonded to phosphate					
hs 1.008	0.135		Hydroger	n bonded t	to sulphur		
hw 1.008	0.135		Hydroger	n in water	r		
hx 1.008	0.135		H bonded	d to C nex	xt to positively charged group		
f 19.00	0.320		Fluorine	e			
cl 35.45	1.910		Chlorine	e			
br 79.90	2.880		Bromine				
i 126.9	4.690		Iodine				
n 14.01	0.530		Sp2 nitrogen in amide groups				
[]							
c2-no 327.6	1.463	SOURCE3	4	0.0013	0.0013		
c2-o 546.2	1.261	SOURCE3	4	0.0144	0.0144		
c2-oh 425.4	1.333	SOURCE1	53	0.0000	0.0000		
c2-os 392.6	1.357	SOURCE1	315	0.0088	0.0097		
c2-p2 375.9	1.670	SOURCE3	62	0.0078	0.0147		
[]							
<angles></angles>							
<dihedrals></dihedrals>							

Atom typing

The Amber forcefield family

Amber contains a variety of continously improving force fields:

General Biomolecules:

leaprc.ff86	Weiner et al. 1986	parm91X.dat
leaprc.ff94	Cornellet al. 1994	parm94.dat
leaprc.ff96	"	parm96.dat
leaprc.ff98	"	parm98.dat
leaprc.ff99	"	parm99.dat
leaprc.ff03	Duanet al. 2003	parm99.dat+frcmod.ff03
leaprc.ff03ua	Yang et al. 2003	parm99.dat+frcmod.ff03+frcmod.ff03ua
leaprc.ff02	reduced (polarizable) charge	s parm99.dat+frcmod.ff02pol.r1
leaprc.ff02EP	" + extra points	parm99EP.dat
leaprc.ff99SB	"	parm99.dat+frcmod.ff99SB
leaprc.ff99bsc0	BSC	parm99.dat+frcmod.ff99SB+frcmod.parmbsc0
leaprc.ff10	BSC0+ff99SB+Ions08	parm10.dat
General organic molecules		
leaprc.gaff	none	gaff.dat
Carbohydrates		
leaprc.glycam04	Woods <i>et al.</i> glycam04.dat	
leaprc.glycam04EP	" glycam04EP.	dat

Infinite Systems

- Real systems are almost infinite in size

- In vacuo simulation are rarely a good idea

Periodic boundary conditions: Simulation boxes and nearest image conventions

Infinite electrostatics: Ewald summation

Problem: physical properties depend on box size

System Sizes and Time Scales

The extremes:

- 1977: BPTI, 500 atoms, 10 ps, in vacuo
- 2002: F_0F_1 -ATPase, 300 kDa Protein, 1 ns, large scale conformational changes
- 2006: TMV, 1 Mio atoms, 50 ns

Villin Headpiece, 20k atoms, 500 µs

State of the art simulations on moderate computational ressources:

10k-100k atoms,	GOOD	-> most proteins are accesible
Full solvation, PBC	GOOD	-> physically meaningful parameters
1-10 ns simulation time	BAD	-> many biochemical system operate on
		longer timescales

Coarse Graining

Guided Dynamics

Add an additional biasing potential to sample regions of interest

- Steered MD

- Targetted MD

Replica Exchange

Run several Replica of your system at different temperatures and swap them occasionally

QM/MM Hybrid Models

Treat the most interesting part of your system quantum mechanically, the rest by the forcefield.

Many applications in biochemical reactions mechanisms

Problems:

- one sided polarization
- vdW interactions between QM and MM
- boundary crossings and link atoms:

Free Energy Methods

- MM-PBSA
- Umbrella Sampling & WHAM
- Linear Interaction Energy
- FEP & Thermodynamic Integration
- (-> see afternoon session...)

The MM-PBSA thermodynamic cycle