
Bioinformatics

Modeling of biological systems

Adrian E. Roitberg

University of Florida

ECAR2012 -

Escuela de Computacion de Alto Rendimiento

Why run in parallel or on a GPU?

• Sampling.

– We can get more simulation done in a

given amount of wall clock time.

– Wall clock time defines how much science

you can do before you die.

• Each new generation of processor is

getting slower.

Serial vs Parallel

Serial

Parallel

The Problem

• Each MD step requires knowledge of

the previous step.

– We start step N+1 until we have completed

N, N-1, N-2 etc etc.

• This means we need a fast way to

communicate between processors.

– Bandwidth and latency of the interconnect

limits scaling.

– Performance CAN be improved by running

in parallel, however.

AMBER in Parallel

• Uses the Message Passing Interface

(MPI)

• Parallel codes must be compiled

separately.

• Data is sent

between nodes on

each MD step.

Always test performance

• Using more CPUs is not always faster.

• Different problem sizes scale differently.

– GB scales better than PME

– Larger simulations can typically be run on

more CPUs.

– Writing to mdcrd, mdout or restrt file too

often can hurt performance.

– PMEMD provides better performance than

sander

• If it supports your simulation settings you

should use it.

JAC (23K atoms)

Cellulose (408K atoms)

GPU Support
• Collaboration with NVIDIA to

produce CUDA version of

AMBER.

– PMEMD Engine

– Implicit Solvent GB

– Explicit Solvent PME

• Provides a way to make a

desktop very fast.

• More info here:

• ambermd.org/gpus

http://www.nvidia.com/page/home.html

Supercomputers in a Desktop

4.44TFlop Peak

ASCII Red (LANL), 3.2TFlop,

#1 Top 500, June 2000.

What is a GPU?

• Graphics Processing Unit
– ‘Specialist’ processor for accelerating the rendering

of computer graphics.

– Invented by 3DFX (Later bought by NVIDIA) in 1997.

– Originally fixed function pipelines

• Invention of OpenGL added

programmability.

• Pixels can be programmed with specific

textures.

• Onboard memory for storing textures.

– Development driven by $150 billion gaming industry.

A Brief History of GPU Computing

• 2003 - First attempts to use GPUs for general
computing.
– Programmed as graphics primitives (heroic)
– problems had to be expressed in terms of vertex

coordinates, textures and shader programs.
– Hardware lacking certain ‘features’ – No random reads or

writes etc.

• 2004 – ‘Brook’ programming language for GPUs.
• 2007 – NVIDIA announce CUDA at SC07

– Release GPUs with specific ‘computational’ features.

• 2008 – OpenCL language ratified.
– Mainly aimed at embedded devices but has features for

GPU computation.

Why Interest GPUs?

Memory Bandwidth Peak Flops

What’s the Catch?

GPUs Require Rewriting Lots of

Code(Is it worth it?)

Spoiler: Yes. But LOTS of work.

30 multiprocessors

1.45*3flops/cycle(FMAD+FMUL)*240 cores

What GPU Codes Exist?

• Excellent list on:

• http://www.nvidia.com/cuda/

• Examples available form almost all fields.

– Computational

Chemistry

– Life Sciences

– Astrophysics

– Finance

– Medicine / Medical

Imaging

– Natural Language

Processing

– Social Sciences

Towards routine microsecond

molecular dynamics simulations of

proteins on commodity hardware:

Extreme GPU acceleration of

AMBER

What is AMBER?

An MD simulation

package

12 Versions as of 2012

distributed in two parts:

- AmberTools, preparatory and analysis

programs, free under GPL

- Amber the main simulation programs,

under academic licensing

independent from the accompanying

forcefields

A set of MD forcefields

fixed charge, biomolecular forcefields:

ff94, ff99, ff99SB, ff03, ff11

experimental polarizable forcefields e.g.

ff02EP

parameters for general organic

molecules, solvents, carbohydrates

(Glycam), etc.

in the public domain

AMBER Usage

• Approximately 850 site licenses (per

version) across most major countries.

Why do we need Supercomputers?

Lots of Atoms

Why do we need Supercomputers?

Lots of Time Steps

• Maximum time per step is limited by fastest
motion in system (vibration of bonds)
 = 2 femto seconds (0.000000000000002

seconds)

(Light travels 0.006mm in 2 fs)

• Biological activity occurs on the nano-second
to micro-second timescale.

1 micro second = 0.000001 seconds

SO WE NEED

500 million steps to reach 1 microsecond!!!

The Problem(s)

• Molecular Dynamics is inherently serial.

– To compute t+1 we must have computed all

previous steps.

– We cannot simply make the system bigger since

these need more sampling (although many

people conveniently forget this).

GPU Support

in

AMBER

Goetz, A. W.; Williamson, M.

J.; Xu, D.; Poole, D.; Grand,

S.; Walker, R. C. “Routine

microsecond molecular

dynamics simulations with

amber - part i: Generalized

born", Journal of Chemical

Theory and Computation.,

2012, 8 (5), pp 1542–1555,

DOI:10.1021/ct200909j

Supported Features

• Supports ‘standard’ MD

– Explicit Solvent (PME)

• NVE/NVT/NPT

– Implicit Solvent (Generalized Born)

• Thermostats

– Berendsen, Langevin, Anderson

• Restraints / Constraints

– Standard harmonic restraints

– Shake on hydrogen atoms

New in AMBER 12

• Umbrella Sampling

• REMD

• Simulated Annealing

• Accelerated MD

• Isotropic Periodic Sum

• Extra Points

Design Goals

• Transparent to the user.

– Easy to compile / install.

– AMBER Input, AMBER Output

– Simply requires a change in executable name.

• Cost effective performance.

– C2050 should be equivalent to 4 or 6 standard IB

nodes.

• Focus on accuracy.

– Should NOT make any additional approximations.

– Accuracy should be directly comparable to the

standard CPU implementation.

Precision Models

• Multiple codes have simply used single

precision without any ‘REAL’ consideration

of accuracy implications.

– Validation is now the ‘worst’ part of

programming.

• We have focused on accuracy first.

– Get the answers correct and validate!

– Then improve performance.

• We have implemented several precision

models for testing.

When Does Single Precision Fail?

32-bit floating point has approximately 7

significant figures

When it happens: PBC, SHAKE, and

Force Accumulation.

 1.456702

+0.3046714

 1.761373

-1.456702

0.3046710

Lost a sig fig

 1456702.0000000

+ 0.3046714

 1456702.0000000

-1456702.0000000

 0.0000000

Lost everything.

Precision Models

SPSP - Use single precision for the entire

calculation with the exception of

SHAKE which is always done in

double precision.

SPDP - Use a combination of single precision

for calculation and double precision

for accumulation. (Default)

DPDP - Use double precision for the entire

calculation

Force Accuracy

Energy Conservation: Implicit Solvent

(kT/ns/d.o.f)

UBIQUITIN

GB
dt = 0.5fs dt = 1.0fs

CPU -0.000008 -0.000835

DPDP -0.000001 -0.000780

SPDP -0.000008 -0.000631

SPSP 0.000589 0.001139

OpenMM --- 0.005411

0.000008 kT/ns/dof = 0.01798 kcal/mol/ns.

Energy Conservation: Explicit Solvent
(kT/ns/d.o.f)

DHFR dt = 0.5fs dt = 1.0fs dt = 2.0fs*

CPU 0.000000 0.000001 -0.000047

DPDP 0.000007 0.000024 -0.000101

SPDP -0.000052 0.000050 -0.000066

SPSP 0.001969 0.001171 3.954495

Gromacs 4 --- 0.011xxx 0.005xxx

Desmond --- 0.017xxx 0.001xxx

NAMD --- 0.023xxx ---

+ = J. Chem. Theory Comput., Vol. 4, No. 3, 2008

* = shake on H bonds. 0.000008 kT/ns/dof = 0.01798 kcal/mol/ns.

Energy Conservation

http://upload.wikimedia.org/wikipedia/commons/f/f0/Ubiquitin_cartoon-2-.png

Single Precision Issues?

• NVE does not work, but we can use a

thermostat no?

Performance

AMBER 11

Implicit Solvent

Performance
As expected the performance

differential is larger for bigger

systems.

8 proc = Intel E5462 @ 2.8GHz

Explicit Solvent Performance

(JAC DHFR Production Benchmark)

 CPU 8xE5462 GPU C2050

TRP-CAGE, SMALL TEST

21,1200

21,1400

21,1600

21,1800

21,2000

21,2200

21,2400

0 50 100 150 200 250 300 350 400 450 500

E
n

e
rg

y
 (

K
C

a
l/

M
o

l)

Step

IGB1 NVE No Shake Total E 0.5fs Time Step (NSCM = 1000)
[DPDP]

CPU 4 MPI

GPU 2009/06/08

12xX5

670

24xX5

670

48xX5

670

192xX

5670
M2090

GTX58

0

GTX68

0

4xM20

90

NS/Day 0,07 0,14 0,26 0,991 1,55 1,81 2,51 3,49

0

0,5

1

1,5

2

2,5

3

3,5

4

N
S

/D
a
y

Nucleosome, 25095 atoms, igb=1, 2fs, no cut

12xX567

0

24xX567

0

48xX567

0
M2090 GTX580 GTX680

NS/Day 6,63 12,6 22,66 87,81 103,58 150,54

0

20

40

60

80

100

120

140

160

N
S

/D
a
y

Myoglobin, 2492 atoms, igb=1, 2fs, no cut

12xX5670 M2090 GTX580 GTX680

NS/Day 247,13 620,89 788,16 892,13

0

100

200

300

400

500

600

700

800

900

1000

N
S

/D
a
y

TRPCage, 304 atoms, igb=1, 2fs, no cut

Implicit Solvent

Performance

(SPFP)

As expected the performance

differential is larger for bigger

systems.

Explicit Solvent Performance

(JAC DHFR Production Benchmark)

8,47

46,1

36,89

47,62

54,46

69,78

74,62

43,57

58,51

78,06

88,71

0 10 20 30 40 50 60 70 80 90 100

8 x Intel E5452 (2.8 GHz)

48 x XT5 nodes

1 x C2075

2 x C2075

1 x GTX580

2 x GTX580

1 x GTX680

1 x M2090

2 x M2090

4 x M2090

8 x M2090

Throughput (NS/day)

Single $500

Graphics

Card

