
Introduction to Computer Graphics

Juan Hernando Vieites
jhernando@fi.upm.es

ECAR 2012

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

1 Introduction to 3D Computer Graphics
Object modelling
Geometrical transformations
Lighting
Texturing and aliasing

2 Basic introduction to GLSL

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics

1 Introduction to 3D Computer Graphics
Object modelling
Geometrical transformations
Lighting
Texturing and aliasing

2 Basic introduction to GLSL

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics

3D Computer Graphics

Definition of Computer Graphics

Computer Graphics is the area of Computer Science that has
to do with the generation of synthetic images, also known as
rendering.

This presentation will be restricted to 3D graphics (but not
necessarily photo-realistic images).

Computer Graphics & Visualization

Research on 3D CG has its main driving force and application
on the videogame and film industry.

But graphics are also important to visualization as a basic
image rendering tool (in 2D and 3D) and in more advanced
rendering problems (e.g. volume rendering, automatic
technical illustration).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics

References

Computer Graphics: Principles and Practice, 2nd edition.
Foley, Van Damm, Feiner, y Hughes. Addison-Wesley, 1.996

Real time rendering (3rd edition). Tomas Akenine-Möller, Eric
Haines, Naty Hoffman. A.K. Peters, 2008

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics

The pinhole camera

x′ =
xz′

z

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics

The graphics pipeline

Definition

Graphics pipeline is a common name to refer to the processing
pipeline used in hardware accelerated rasterization to convert
polygons (mainly triangles) into pixels.

Stages

The exact stages of a graphics pipeline depend on the author. A
simplified view common to OpenGL and DirectX is shown below.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Object modelling

Object modelling

What is a model of an object

A model is a description of an object with all the information
needed for rendering.

The image generation process is a simulation of the
interactions between the light and the models.

Properties of object models

The geometrical shape and
location of elements.

Topology.

Features of the object
elements (color, reflectance,
transmittance, ...)

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Object modelling

Geometrical models

Types of geometrical models

Wireframe models.

Parametric primitives: spheres, cylinders, ...

Boundary representations (B-rep):

Polyhedral: polygonal and tetrahedral meshes.
Non-polyhedral: B-splines, NURBS, Bézier, subdivision
surfaces.

Scalar field representations: voxels, distance fields, . . .

Others: Constructive solid geometry, spatial partition
representations, . . .

In general, there is no one-size-fits all solution and even more, the
most appropriate model and support data structures for
simulations may not be the most appropriate for visualization.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Object modelling

Polygonal meshes

Representation

Polygonal meshes can be represented in several ways.

For GPU-based rendering the usual way is to use a vertex and
index lists:

Vertices = [(0 0
√

6
3),

(−0.5
√

3
4 0),

(0 −
√

3
4 0),

(0.5
√

3
4 0)]

Faces = [A,B,C,A,C,D,
A,D,B,B,D,C]

Strip = [B,A,C,D,B,A]

Additional attributes can be provided at vertices or faces to be
used for rendering.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Object modelling

Polygonal meshes

Observations

Triangular meshes can be considered as the “machine code”
of the models in computer graphics.

In rasterization pipelines, most of the other representations
cannot be directly rendered, So they are adaptively converted
into meshes for display.

When topology is needed, more complex data structures are
required (e.g. DCEL, double connected edge list).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Object modelling

Geometrical primitives

Primitives

The geometrical primitive are the basic geometrical objects
that are directly supported by low-level graphics APIs.

In OpenGL the primitives are: points, lines, line strips,
triangles, triangle strips, triangle fans, quads, quad strips and
polygons.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Vector spaces

A vector space defines elements in Rn and operations between
these elements and scalars: addition (vector-vector and
scalar-scalar) and multiplication (scalar-scalar) and
(scalar-vector).

For a n dimensional space, a base of that space is given by n
linearly independent vectors.

Affine spaces

An affine space is a vector space extended with the notion of
point.

Subtraction of two points gives a vector and a point plus a
vector gives a point.

An affine space is defined by a vector base and an origin.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Linear transformations on R3

Definition and properties

A linear transformation T of a vector in a vector space is a
closed operation that satisfies:

T (αv + βu) = αT (v) + βT (v)

All linear transformations in R3 can be stated as a
composition of: rotations, scalings, symmetries and shears.

In R3, linear transformations can be represented as 3× 3
matrices.

Transforming a vector is multiplying it by a matrix: v′ = Mv.

Note that, in general, transformations are not commutative,
as neither is the matrix product.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Affine transformations

Translations

In the previous list of transformations there was one missing:
translation.

Translation is not a linear transformation!

Affine transformations

An affine transformation is a linear transformation followed by
a translation:

v′ = Mv + p

Affine transformations only make sense for points. Vectors are
directions so they should be invariant under translation.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Homogeneous coordinates

Translations in matricial form

The addition of two vector v and t can be represented as
matrix vector product if vectors are extended with an
additional component with value 1.

For a 2D translation the 3× 3 matrix is: 1 0 tx
0 1 ty
0 0 1

 (vx vy 1) = (vx + tx vt + tt1)

Homogeneous coordinates

In homogeneous coordinates points are expressed in the form
(px py pz 1) while vectors are (vx vy vz 0).

Note that vectors are unaffected by translations, as desired.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Perspective projection

Requirements

The projection has to project not only x and y, but also z.

The projected z is used to compare the depth of different
fragments and perform perspective correct interpolation.

Features

The chosen projection matrix is a 4× 4 matrix operating on
homogeneous coordinates.

It is non linear in R3, but linear in the affine space in which it
operates.

The projection matrix maps the view frustum volume in
camera coordinates to a the normalized coordinates in clip
space: [−1..1]× [−1..1]× [−1..1] (the w is not considered
here).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Perspective projection

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Perspective projection matrix

OpenGL projection matrix

The projection matrix defined by a view frustum r, l, t, b, n, f
is: 

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0


Find its derivation here: http://www.songho.ca/opengl/gl_projectionmatrix.html

Note that the camera is looking down negative −z, that
means that the near plane is at −n
(P (0 0 − n 1)t = (0 0 − 1 0)t)

The final normalized device coordinates are obtained after
perspective division (dividing x, y, z by w.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

http://www.songho.ca/opengl/gl_projectionmatrix.html

Introduction to 3D Computer Graphics Geometrical transformations

Z-transformation

The projected value of z is not linear

The closer near is to 0, the more the projected values are
pushed towards 1:

Graphs made with fooplot: http://fooplot.com/

The z-values are normally discretized into 24-bits, so this can
be a source of problems.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

http://fooplot.com/

Introduction to 3D Computer Graphics Geometrical transformations

Other considerations

Transforming normal vectors

When transforming a model, normals cannot be transformed
with the same matrix than points.

The inverse transposed is used instead (the prove uses the
normal plane equation): n′ = (M−1)tn

From (a) to (b) the transformation applied is S =

(
1 2

3
0 1

)
, however

the correct normal in (c) requires (S−1)
t
=

(
1 0

− 2
3

1

)

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Other considerations

Notation and composition

Some APIs use row-major order for matrices and others use
column-major order.

In row-major order: v′ = M1M2v

In column-major order the notation is: v′t = vtM1
tM2

t

In both cases, the first transformation applied is the closer to
the vector.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Geometrical transformations

Hidden surface removal

The cheapest pixel to render is that which is not rendered at all

Hidden surface removal techniques

Object space

Back-face culling: Remove triangles that are facing backwards
(determined by the vertex order during triangle setup)
View frustum culling: Use spatial partitions of the scene to
determine which objects are inside the view frustum culling.
Occlusion culling: It can be a pure object space technique (e.g.
portal culling) or combine image space with order space
(hardware occlusion queries).

Image space

Z-buffer algorithm: The algorithm used by GPUs to determine
visibility during rasterization.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Lighting

Lighting

Lighting is the process of computing the final luminance of a pixel
considering the (local or global) interactions between the light and
the objects’ materials.

Lighting models vs shading models

In rasterization there is typically a distinction between lighting
models and shading models.

Lighting models: Specify how the light is reflected, emitted or
transmitted by the surface (or volume).

Shading models: Specify how the lighting model is applied
(they have to do with sampling and interpolation).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Local illumination

Local illumination refers to the calculation of lighting based
solely on the incoming light and properties at a point without
considering the rest of the object.

In real-time CG, the local illumination is typically the addition
of three components:

Ambient
Diffuse
Specular

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Lambertian reflectance

Definition, properties, formulation

Lambertian reflectance is the lighting model for perfectly
diffusely reflecting surfaces (matte).

In this model incoming light is reflected equally in all direction.

The formulation is: Lo = (N ·L)KdLi

As a consequence of its definition, the lighting of lambertian
diffuse surfaces is view independent.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Specular reflection

Phong specular lighting

A simple model for glossy surfaces. The incoming light is
reflected using the normal and depending on the angle
between the reflected light and the eye vector, a portion of
the pure light color is added to the pixel color.

The formulation is: Lo = (L′ ·E)αLi, where
L′ = L+ 2(N ·L−L)

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Shading models

Gouraud, Phong and deferred shading

The most common shading models for local
illumination (although Gouraud is becoming
obsolete).

Gouraud shading applies the lighting
model at the vertices and interpolates
colors at pixels.

Phong shading applies the lighting model
at each pixel. It interpolates the
parameters of the lighting model.

Another alternative common in games,
deferred lighting, is to write all lighting
parameters to an output buffer and compute
lighting as a post-processing step.

Gouraud

Phong

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

More advanced local illumination

BRDF

Bidirectional Reflectance Distribution Functions are black box
functions that for a pair of input and output directions return
the ratio of the outgoing radiance to the incoming irradiance
in those directions.

These functions are used in physically correct rendering.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Lighting

Global illumination

The rendering integral

Global illuminations methods try to approximate an equation
known as rendering equation [Kajiya, 86]:

Lo(x,ω) = Le(x,ω) +

∫
Ω
fr(x,ω

′,ω)Li(x,ω)(ω′ · n)dω′

Techniques

Ray tracing.

Radiostity.

Ambient occlusion (interactive approximation).

More complex methods account for scattering, fluorescence, . . . ,
which are limitations of the formulation above.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Textures

Textures

A texture is uniform 1D, 2D or 3D grid with a value stored at
each location of the grid.

Textures are indexed by texture coordinates and values are
accessed using some filter (nearest, bilinear, trilinear, . . .).

They can be used to apply colors, retrieve properties used for
shading, gradients,

The resolution is each grid size is usually a power of 2 but
non-power-of-two textures also supported by modern GPUs.

Textures are a first class citizen in graphics APIs and GPUs.
There is dedicated hardware for fetching, decompression and
caching of texture memory as well as filtering.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Texture mapping

Each vertices has a set of textures coordinates defined

Texture coordinates are not linearly interpolated because it
introduces a noticeable distortion in perspective projections.

Instead the are interpolated using the inverse of the depth as
an additional interpolation weight.

Texture coordinates can also be transformed in the vertex
processing stages.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Aliasing

What is aliasing

Whenever a continuous function is sampled intro discrete
samples aliasing is a problem.

The Nyquist theorem states which is the maximum frequency
that can be reconstructed for a given sampling frequency

Aliasing occurs when the original signal contains frequencies
above the Nyquist rate.

Low-pass filtering is required.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Aliasing

Aliasing in CG

In CG is common to find infinite frequency signals: creases
and polygon borders.

Texture sampling is also subject to aliasing problems: during
texture mapping, textures are resampled to a different
resolution than the original.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Polygon anti-aliasing

Techniques

SSAA (super-sampling anti-aliasing): Render higher resolution
then downsample (the brute-force approach).

MSAA (multi-sample anti-aliasing): Use several depth and
coverage samples per pixel but fewer color samples.

MLAA (Morphological anti-aliasing): Post-processing
anti-aliasing based on edge detection. Cheaper than SSAA
and MSAA and slightly worse results than MSAA.

No AA compared to MSAA with 4 coverage samples per pixel

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Texture sampling

Texture magnification

Bilinear and trilinear filtering implemented in hardware.

Texture minimization

Mip-maps: a texture depending where each level is a low-pass
filtered and halved copy of the previous level. Trilinear
sampling is performed between neighbour levels based on the
distance.

Mip-map texturing
Mip-map
texture

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Introduction to 3D Computer Graphics Texturing and aliasing

Texture anisotropic sampling

Mip-map filtering can cause blur when the texture is viewed at
an oblique angle.

Anisotropic filtering samples the mip-map considering the
projection of the pixel on the texture, increasing the sharpness
of the rendering.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

1 Introduction to 3D Computer Graphics
Object modelling
Geometrical transformations
Lighting
Texturing and aliasing

2 Basic introduction to GLSL

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

The OpenGL graphics pipeline

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

GLSL

GLSL

GLSL stands for OpenGL Shading Language.

It is the language used to program the programmable stages
of the OpenGL pipeline.

GLSL programs

A GLSL program is compiled into machine code that the GPU
executes. The processing flow from source to execution is:

A collection of plain text shader files is written.

The files are passed to the driver, which compiles then in
shader objects.

The shader objects are linked into a program.

The application sets the program inputs with the API.

The program is uploaded and executed in the GPU.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Versions

OpenGL 2.x: 1.1, 1.2

OpenGL 3.x: 1.3, 1.5, 3.3

OpenGL 4.x: 4.0, 4.1, 4.2

References

The best online documentation are the official specification and
manual pages:

http://www.opengl.org/sdk/docs/manglsl/

http://www.opengl.org/documentation/glsl/

The Orange Book (OpenGL Shading Language 3rd Ed., Randi J.
Rost, Addison-Wesley) is also a good reference

Omissions

Features deliberately omitted in this slides: tessellation shaders,
layouts, multiple buffer outputs, . . .

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

GLSL Types

Scalar types

The scalar types are the common one:

bool, int, unsigned int and float

Newer versions also incorporate double and half.

Linear algebra types

GLSL has several built-in types for vectors and matrices:

For vectors the types names are gvecn, where g can be:
nothing for floats, i for integers, u for unsigned integers and b

for booleans; n is one of 2, 3, or 4.

Matrix types are all float: mat2, mat3, mat4, mat3x3, mat2,
mat2

Matrices are stored in column-major order, but the notation
used for them is the usual one in math texts.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

GLSL Types

Samplers

Opaque handlers used in texture operations.

Cannot be assigned, only passed as in parameters or declared
globally.

Initialized by the OpenGL API (host side).

The most important sampler types are: sampler1D,
sampler2D, sampler3D, samplerRect.

Structs

Struct types can be declared using the same syntax than in C.

Arrays

Arrays are declared and used like in C.

There is no pointer type in GLSL (without extensions).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Qualifiers

const Constant variables (initialized at compilation time or
during function invocation).

in: Read-only variables from the previous pipeline stage. Also
used for read-only formal arguments in functions.

out: Write variables from the previous pipeline stage. Also
used for output formal arguments in functions.

inout: Only for input output formal argument in function
declarations.

uniform: Input variable linked to a program through the API.
Once a primitive is issued, the value does not change for it.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Variable declarations

Syntax and scope

Variables are declared with the following syntax: qualifier type
identifier [= initializer];

Variable scope follows similar rules to C.

Some qualifiers are not allowed in local variable declarations.

Example

const int x;

in vec3 lightPosition;

uniform sampler2D normalMap;

out vec4 color;

void main() {
in vec3 int n = 10; // invalid

}

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Shaders

Shader types

Vertex shader: Takes a vertex and its attributes and outputs a
vertex plus user defined output attributes.

Geometry shader: Takes a single primitive (point, line,
triangle) and outputs one or several primitives (point, line, line
strip, triangle, triangle strip). The maximum number of
output primitive is fixed in the API.

Fragment shaders: Takes a rasterized fragment and computes
its final color, optionally the final fragment depth can be also
output.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Shaders

Example (Vertex shader)

in vec2 texCoordIn;

out vec2 texCoord;

void main()

{
gl Position =

gl ProjectionMatrix * gl ModelViewMatrix *

gl Vertex;

texCoord = texCoordIn;

}

Example (Fragment shader)

unfiform sampler2D tex;

in vec2 texCoordOut;

out vec4 color;

void main()

{
color = texture(tex, texCoordOut);

gl FragDepth = gl FragCoord.z;

}

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Shaders

Example (Vertex shader)

in vec2 texCoordIn;

out vec2 texCoord;

void main()

{
gl Position =

gl ProjectionMatrix * gl ModelViewMatrix *

gl Vertex;

texCoord = texCoordIn;

}

Example (Fragment shader)

unfiform sampler2D tex;

in vec2 texCoordOut;

out vec4 color;

void main()

{
color = texture(tex, texCoordOut);

gl FragDepth = gl FragCoord.z;

}

Example (Geometry shader)

in texCoordIn[];

out vec2 texCoordOut;

void main()

{
gl Position = gl PositionIn[0];

texCoordOut = texCoordIn[0];

EmitVertex();

gl Position = gl PositionIn[1];

texCoordOut = texCoordIn[1];

EmitVertex();

gl Position = gl PositionIn[2];

EmitVertex();

texCoordOut = texCoordIn[2];

gl Position = gl PositionIn[0];

EmitVertex();

EmitPrimitive();

}

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Shaders

Example (Vertex shader)

in vec2 texCoordIn;

out vec2 texCoord;

void main()

{
gl Position =

gl ProjectionMatrix * gl ModelViewMatrix *

gl Vertex;

texCoord = texCoordIn;

}

Example (Fragment shader)

unfiform sampler2D tex;

in vec2 texCoordOut;

out vec4 color;

void main()

{
color = texture(tex, texCoordOut);

gl FragDepth = gl FragCoord.z;

}

Example (Geometry shader)

in texCoordIn[];

out vec2 texCoordOut;

void main()

{
gl Position = gl PositionIn[0];

texCoordOut = texCoordIn[0];

EmitVertex();

gl Position = gl PositionIn[1];

texCoordOut = texCoordIn[1];

EmitVertex();

gl Position = gl PositionIn[2];

EmitVertex();

texCoordOut = texCoordIn[2];

gl Position = gl PositionIn[0];

EmitVertex();

EmitPrimitive();

}

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Functions

Declaration and definition

Functions can be declared as in C.

With the addition of the in, out and inout qualifiers.

Parameters without qualifier are considered.

Recursion is NOT supported.

Functions can be declared in one compilation unit and defined
somewhere else.

Example

vec4 transform(vec4 v, out vec3 eye)

{
vec4 w = gl ModelViewMatrix * v;

eye = -w.xyz;;
return gl ProjectionMatrix * w;

}

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Control flow

Control flow

GLSL supports almost all C control flow statements:
if. . . else, for, while, do. . . while, switch.

Normal flow can be interrupted with break, continue and
return.

Discarding fragments

The special single keyword statement discard can be used to
stop processing in (and only in) fragment shaders.

It affects a single fragment.

The implementation must guarantee that the fragment shader
execution has no side effects (no write to the framebuffer
must occur).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Coordinates systems

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Built-in variables

Global (all deprecated)

gl ModelViewMatrix: The local to camera coordinates
transform matrix.

gl ProjectionMatrix: The projection matrix. transform
matrix.

gl NormalMatrix: The local to camera matrix to use for
normal vectors

The inverse matrices are also available.

Vertex shaders

gl Position: Output variable that must be written.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Built-in variables

Geometry shaders

gl PositionIn: Input variable with the values output by the
vertex shader for this primitive’s vertices.

gl Position: Output variable that must be written.

Fragment shaders

gl FragCoord: Input variable with the x, y window
coordinate and depth

gl FragDepth: Output variable to override the default depth
calculation.

gl FragColor: The output color (deprecated).

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Built-in functions

With vectors

Scalar and vector products: float dot(gvec, gvec), vec3
cross(vec3, vec)

Length and normalization: gvec normalize(gvec), float
length(gvec)

Reflection of a vector on the plane defined a normal vector:
gvec reflect(gvec ray, gvec n)

Elements access: vec3 v, v[0] == v.r == v.x

Swizzling: vec4 v, v.xyz, v.zx, v.rbg

Initializers: like a constructor call in C++. Can be used as
declaration initializers or literals.

vec3 p = vec3(1, 2, 3);

vec3 p = vec3(0.0);

vec4 q = vec4(p, 1.0);

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

Basic introduction to GLSL

Built-in functions

With textures

gvecx texture(sampler, vecx);

Geometry shaders

EmitVertex(): pushes a new vertex into the primitive under
constructions. All out variables must have been written before
the vertex is emitted.

EmitPrimitive(): finalizes the primitive under construction.

Other useful functions

min, max, pow, abs, . . .

cos, sin, tan, . . .

Check the online manual pages:
http://www.opengl.org/sdk/docs/manglsl/

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Introduction to Computer Graphics

http://www.opengl.org/sdk/docs/manglsl/

	Introduction to 3D Computer Graphics
	Object modelling
	Geometrical transformations
	Lighting
	Texturing and aliasing

	Basic introduction to GLSL

