
Parallel rendering

Juan Hernando Vieites
jhernando@fi.upm.es

ECAR 2012

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



1 Introduction

2 Techniques for large data sets

3 Parallel rendering
Compositing techniques

4 Libraries and frameworks
Equalizer

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Introduction

Why do parallel rendering/visualization

Motivations

Whenever we want to:

Increase the rendering capability:

Being able to deal with larger data sets in a reasonable amount
of time.
Being able to combine more techniques in a single
visualization.

Increase interactivity: The same data sizes but with shorter
response time.

we will find bottlenecks in some stage of the visualization pipeline.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Introduction

Why do parallel rendering/visualization

Low level bottlenecks

These refer to both the CPU and the GPU:

Compute power

Memory

Bandwidth

Graphics pipeline bottlenecks

Update limited (CPU pre-processing)

Geometry processing (too much vertex processing)

Fill-rate limited (too much fragment processing)

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Introduction

HPC vs. real-time applications

Parallel rendering in HPC

To tackle capability problems (massive
data).

Interactivity is interesting in
exploratory settings, but it is not
deemed as the main goal.

Latency is not considered an issue.

Weak scaling is more interesting.

Software rendering in a
supercomputer.

Supernova collapse simulation
(8633 Scalar field)

Simulation by John Blondin at the
(NCSU) and Anthony Mezzacappa

(ORNL)
Image by Tom Peterka (ANL) et al

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Introduction

HPC vs. real-time applications

Parallel rendering in real-time/interactive
applications

The main goal is to reduce processing
time to increase interactivity.

The data sizes may not be larger, but
we want to render faster.

Latency is an issue in certain settings,
e.g. VR applications

Strong scaling is more interesting.

Dedicated cluster with GPUs for
rendering.

Also relates to multi-display and VR
facilities.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Techniques for large data sets

Large data sets

What is a large data set?

A large data set is one that forces us to apply special techniques to
process it due to compute/memory/bandwidth constraints.

Techniques to deal with large data

Out-of-core

Sub-setting

Multi-resolution/compression

In-situ

Parallelization

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Techniques for large data sets

Techniques for large data sets

Out-of-core

Load data on demand.

If lowers the memory requirements and enables smaller
machines to process the data.

Still all data is processed (IO will still be a bottleneck)

We: separable data, mappable from outputs to inputs and
result invariant algorithms.

Sub-setting

Reduce the data set to be visualize.

The selection can be:

Trivial (e.g. slicing)
Query driven (manual or semi-automatic)

Query driven sub-setting requires indexing data structures.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Techniques for large data sets

Techniques for large data sets

Multi-resolution/Compression

HD screens have 2M pixels, but some data sets are much
bigger than that in terms of cells.

In some cases, compression and subsampled representations
can be used with the same visual results.

However, the full data must be preprocessed at least once.

In-situ

Do not store the bulk of the data. Process the data as it is
being generated.

A complex problem on its own (resiliency, resource allocation,
load balancing if parallel, ...)

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Types of parallel rendering

Classical classification

Molnar et al presented the first classification of parallel rendering
systems. Originally focused on SMP visualization supercomputers,
the terms still remain.

Sort-first

Sort-middle

Sort-last

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Types of parallel rendering

Sort-first

Graphics database
(arbitrarily partitioned)

G

R R R R

Display

Geometry
processing

(Pre-transform)

Rasterization

GGG

Resdistribute
scene objects

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Types of parallel rendering

Sort-middle

Graphics database
(arbitrarily partitioned)

R R R R

Display

Geometry
processing

Rasterization

G G G G

Redistribute screen-space
primitives

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Types of parallel rendering

Sort-last

Graphics database
(arbitrarily partitioned)

G G G G
Geometry
processing

(Compositing)

RasterizationRRRR

Redistribute pixels,
samples, or fragments

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Database partition

Divide up the objects between the processors.

Each processor renders its part of the scene.

The images are composed (using the z-buffer information)
into a final image.

Equivalent to Molnars’s sort-last.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Database partition

Advantages

Static partitions provide good load balancing in many cases.

Appropriate when the rendering is geometry or memory
limited.

Disadvantages

The compositing step is costly:

GPU-CPU read-back
Uses more network bandwidth (could use compression or ROI)
Transparency is more difficult.

Scalability is limited by the compositing step.

Depending on the viewpoint the rendering can be unbalanced.

Problems with global illumination and anti-aliasing.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Screen space partitions

Divide the screen in regions and assign each region to a
processor.

A variation divides the scene in tiles and uses a master-slave
scheme to dispatch work.

Equivalent to Molnars’s sort-first.

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Screen space partitions

Advantages

Ideal for fill limited applications

Transparency and anti-aliasing are well supported.

Disadvantages

Memory requirements are not decreased.

More difficult to balance (needs dynamic load balancing)

Scalability is limited by the view frustum culling algorithm.

Problems with global illumination.

Neither sort-first nor sort-last is always better than the other.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Pixel/sample partitions

Pixel partitions

Distribute pixels over processors in an interleaved fashion.

The workload of geometry processing is not reduced.

Only useful for applications that are purely fill-limited.

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Sample partitions

Similar properties to pixel partitions but different goal.

The goal is to increase the rendering quality by reducing
aliasing.

Every processors renders the full image with a small shift in
the camera.

The images are averaged instead of interleaved.

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Frame distribution

Distribute frames over processors

Subtypes

Time multiplexing

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering

Frame distribution

Distribute frames over processors

Subtypes

Time multiplexing

Eye decomposition

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Compositing

Compositing is needed when the database is partitioned
between the processors to merge the images into a single one.

This step has a non-negligible impact in the final rendering
time.

Algorithms

All-to-one (trivial, unbalanced)

Direct send

Binary swap

2-3 swap

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Direct send

Make all processors collaborate not only in the rendering but
also in the compositing step.

For n processors, each one is responsible of composing a
1/nth of the image.

Each processors sends to all the others the portion of the
image they are responsible to compose

In total n(n− 1) messages are exchanged.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Direct send

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Direct send

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Binary swap

Iterative algorithm that composes the image with a minimum
number of messages.

The image is composed in log2(n) stages.

At each stage, a processor exchanges data only with another
one, and the image portion exchanged is halved each time (in
the first step half the image is exchanged).

At the end each processor has 1/nth of the final image.

More amenable to HPC interconnects than direct send.

But, the number of processors has to be a power of 2.

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Binary swap

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Binary swap

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Parallel rendering Compositing techniques

Binary swap

Credit: Stefan Eilemann, Eyescale

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Libraries and frameworks

Libraries, frameworks and systems

Equalizer: Feature rich parallel rendering frameworks to write
parallel rendering applications.

Chromium: library interposed between the application and the
OpenGL library. Can parallelize applications transparently

OpenSG: Distributed scene graph. Discontinued project

Paracomp: Parallel compositing library by HP.

IceT: Parallel compositing developed with HPC applications in
mind

Lighting-2, Sepia-2: Hardware compositors

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering



Libraries and frameworks Equalizer

Equalizer

Description

Open-source framework written in C++ for parallel rendering
applications using OpenGL.

An Equalizer application consists of 3 types of processes
(called nodes) that communicate through TCP sockets

The Application node: The main application class. It
implements the outer methods of the rendering loop.
The Server node: start client nodes based on a configuration
and connects the application to the rendering clients
Rendering clients: The nodes that perform the rendering.

http://www.equalizergraphics.com

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering

http://www.equalizergraphics.com


Libraries and frameworks Equalizer

Equalizer

Features

Multiplatform and vendor independent.

All the rendering parallelizations describe above.

Hybrid parallelization schemes using compounds.

Dynamic load balancing in sort-first and sort-last compounds.

Flexible compositing mechanism.

Zero conf cluster configuration using gpu sd.

Region of interest for readback operations.

Plugin system for image compressors

Stereographic rendering.

More info:
http://www.equalizergraphics.com/features.html

Juan Hernando Vieites jhernando@fi.upm.es ECAR 2012 - Parallel rendering

http://www.equalizergraphics.com/features.html

	Introduction
	Techniques for large data sets
	Parallel rendering
	Compositing techniques

	Libraries and frameworks
	Equalizer


