
G. Hernandez - ECAR 2012 Parallel Programming Models 1

Parallel Programming Models
Gonzalo Hernandez

U. de Valparaíso, Escuela Ingeniería Industrial
U. de Chile, Centro de Modelamiento Matemático

G. Hernandez - ECAR 2012 Parallel Programming Models 2

Parallel Programming Models: Agenda

1) Cluster Computing
 Lefque
 Distributed & Shared Memory

2) Developing Parallel Programs:
 Identification of hotspots & bottlenecks
 Partitioning: domain & functional decomposition
 Designing communications
 Performance Evaluation

3) Parallel Programming Models
 Message passing (distributed memory)
 Threads (shared memory)
 Data Parallel
 Hybrid, SPMD, MPMD

G. Hernandez - ECAR 2012 Parallel Programming Models 3

1) Cluster Computing

 Traditionally, parallel computing has been considered to be
"the high end of computing" and has been motivated by
numerical simulations of complex systems and "Grand
Challenge Problems" such as:
 Weather and climate modeling
 Bioinformatics
 Geology: Seismic activity simulation, oil exploration
 Engineering: transportation and telecommunication networks,

mining operations, manufacturing processes, pattern recognition
and image processing, mechanical devices, electronic circuits, etc.

 These problems are studied mainly in Universities and
Research Centers.

G. Hernandez - ECAR 2012 Parallel Programming Models 4

 Today’s commercial applications are providing an equal or
greater driving force in the development of faster computers.
These applications require the processing of large amounts
of data in sophisticated ways. For example:
 Parallel databases
 Web based business services (business intelligence)
 Oil exploration
 Data mining
 Computer-aided diagnosis in medicine
 Advanced graphics and virtual reality (entertainment industry)
 Networked video and multi-media technologies
 Collaborative work environments

1) Cluster Computing

G. Hernandez - ECAR 2012 Parallel Programming Models 5

1) Cluster Computing

computing node computing node computing nodecomputing nodecomputing node

G. Hernandez - ECAR 2012 Parallel Programming Models 6

1) Cluster Computing: CMM Levque

G. Hernandez - ECAR 2012 Parallel Programming Models 7

 Intel Processors Xeon 5550

1) Cluster Computing: CMM Levque

G. Hernandez - ECAR 2012 Parallel Programming Models 8

1) Cluster Computing: Lefque

G. Hernandez - ECAR 2012 Parallel Programming Models 9

1) Cluster Computing: Distributed Memory

 Distributed memory systems
require a communication
network to connect inter-
processor memory.

 Processors have their own local memory. Memory addresses in
one processor do not map to another processor, so there is no
concept of global address space across all processors.

 Because each processor has its own local memory, it operates
independently. Changes it makes to its local memory have no
effect on the memory of other processors. Hence, the concept of
cache coherency does not apply.

G. Hernandez - ECAR 2012 Parallel Programming Models 10

 Advantages:
 Memory is scalable with number of processors. Increase the number

of processors and the size of memory increases proportionately.
 Each processor can rapidly access its own memory without

interference and without the overhead incurred with trying to maintain
cache coherency.

 Cost effectiveness: can use commodity, off-the-shelf processors and
networking.

 Disadvantages:
 The programmer is responsible for many of the details associated with

data communication between processors.
 It may be difficult to map existing data structures, based on global

memory, to this memory organization.
 Non-uniform memory access (NUMA) times.

1) Cluster Computing: Distributed Memory

G. Hernandez - ECAR 2012 Parallel Programming Models 11

1) Cluster Computing: Shared Memory

 Changes in a memory location generated by one processor are
visible to all other processors.

 Shared memory machines can be divided into two main classes
based upon memory access times: UMA, NUMA.

 Shared memory parallel computers
vary widely, but generally have in
common the ability for all
processors to access all memory
as global address space.

 Multiple processors can operate
independently but share the same
memory resources.

G. Hernandez - ECAR 2012 Parallel Programming Models 12

1) Cluster Computing: Shared Memory

 Advantages Shared Memory:
 Global address space provides a user-friendly programming perspective to

memory.

 Data sharing between tasks is both fast and uniform due to the proximity
of memory to CPUs.

 Disadvantages Shared Memory:
 Adding more CPUs can geometrically increases traffic on the shared

memory-CPU path, and for cache coherent systems, geometrically
increase traffic associated with cache/memory management.

 Programmer responsibility for synchronization constructs that insure
correct access of global memory.

 It is difficult and expensive to design and produce shared memory
machines with ever increasing numbers of processors.

G. Hernandez - ECAR 2012 Parallel Programming Models 13

 Advantages:
 Memory is scalable with number of processors. Increase the number of

processors and the size of memory increases proportionately.
 Each processor can rapidly access its own memory without interference

and without the overhead incurred with trying to maintain cache
coherency.

 Cost effectiveness: can use commodity, off-the-shelf processors and
networking.

 Disadvantages:
 The programmer is responsible for many of the details associated with

data communication between processors.
 It may be difficult to map existing data structures, based on global

memory, to this memory organization.
 Non-uniform memory access (NUMA) times.

1) Cluster Computing: Shared & Distributed Memory

G. Hernandez - ECAR 2012 Parallel Programming Models 14

 The goal for developing parallel programs is to efficiently exploit
the cluster architecture.

 The programmer is typically responsible for both identifying and
actually implementing parallelism (manual process).

 Very often, manually developing parallel codes is a time
consuming, complex, error-prone and iterative process.

 For a number of years now, various tools have been available
to assist the programmer with converting serial programs into
parallel programs.

 The most common type of tool used to automatically parallelize
a serial program is a parallelizing compiler or pre-processor.

2) Developing Parallel Programs

Parallel Programming Models 15

2) Developing Parallel Programs

Fine Grain Size
Compiler

Medium Grain Size
Programmer

Large Grain Size
Programmer

G. Hernandez - ECAR 2012 Parallel Programming Models 16

 Understand the Problem and the Program:
 The first step in developing parallel software is to first understand the

problem that you wish to solve in parallel.
 Determine whether or not the problem is one that can actually be

parallelized.

 Identify the program's hotspots:
 Know where most of the real work is being done. The majority of

scientific and technical programs usually accomplish most of their
work in a few places.

 Profilers and performance analysis tools can help.
 Focus on parallelizing the hotspots and ignore those sections of the

program that account for little CPU usage.

2) Developing Parallel Programs

G. Hernandez - ECAR 2012 Parallel Programming Models 17

 Identify bottlenecks in the program:
 Are there areas that are excessively slow, or cause parallelizable

work to halt or be deferred? For example: Input/Output.

 It is possible to restructure the program or use a different algorithm

to reduce or eliminate unnecessary slow areas ?

 Identify inhibitors to parallelism. One common class of inhibitor is

data dependence, as demonstrated by the Fibonacci sequence

above.

 Investigate other algorithms if possible. This may be the single

most important consideration when designing a parallel application.

2) Developing Parallel Programs

G. Hernandez - ECAR 2012 Parallel Programming Models 18

 Partitioning
 It consist into break the problem into discrete "chunks" of work that

can be distributed to multiple tasks.
 There are two basic ways to partition computational work among

parallel tasks: domain and functional decomposition.
 Domain Decomposition:
 In this type of partitioning, the data associated with a problem is

decomposed. Each parallel task then works on a portion of the data.

 Functional Decomposition:
 In this approach, the focus is on the computation that is to be

performed rather than on the data manipulated by the computation.
The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work.

2) Developing Parallel Programs

G. Hernandez - ECAR 2012 Parallel Programming Models 19

1) Cost of communications
 Inter-task communication generates overhead.
 Machine cycles and resources that could be used for computation are

instead used to package and transmit data.
 Communications require some type of synchronization between tasks.
 Communication traffic can saturate the available network bandwidth.

2) Latency v/s Bandwidth:
 Latency is the time it takes to send a minimal (0 byte) message from point

A to point B. It is expressed in microseconds.
 Bandwidth is the amount of data that can be communicated per unit of

time. It is expressed in gigabytes/sec.
 Sending many small messages cause latency to dominate comm.

overheads.
 To increase the effective communications bandwidth is more efficient to

package small messages into a larger message.

2) Developing Parallel Programs: Communications

G. Hernandez - ECAR 2012 Parallel Programming Models 20

3) Synchronous vs. asynchronous communications
 Synchronous communications require some type of "handshaking"

between tasks that are sharing data. This can be explicitly structured in
code by the programmer, or it may happen at a lower level.

 Synchronous communications are often referred to as blocking
communications since other work must wait until the communications
have completed.

 Asynchronous communications are often referred to as non-blocking
communications since other work can be done while the communications
are taking place.

 Asynchronous communications allow tasks to transfer data independently
from one another. For example, task 1 can send a message to task 2,
and then immediately begin doing other work.

2) Developing Parallel Programs: Communications

G. Hernandez - ECAR 2012 Parallel Programming Models 21

4) Scope of communications
 Point-to-point: Involves two tasks with one task acting as the

sender/producer of data, and the other acting as the
receiver/consumer.

 Collective: Involves data sharing between more than two tasks, which
are often specified as being members in a common group, or
collective. Some common variations (there are more).

5) Efficiency of communications
 What type of communication operations should be used?

Asynchronous communication operations can improve overall
program performance.

 Network media - some platforms may offer more than one network
for communications.

2) Developing Parallel Programs: Communications

G. Hernandez - ECAR 2012 Parallel Programming Models 22

2) Developing Parallel Programs:
Performance Evaluation

 The operations performed by a parallel algorithm are:

 Sequential

 Parallel

 Overhead:
 Redundant operations

 Task start-up and termination times

 Synchronizations

 Software overhead imposed by parallel compilers, libraries,
tools, operating system, etc; task termination time

 Let be the speed-up that is attained with p
processors and a problem of size n.

(,)n p

G. Hernandez - ECAR 2012 Parallel Programming Models 23

 Then:

 The maximum theoretical speed-up: (n,p) ≤ p

 This speed-up is difficult to obtain because of:
 Idle cycles of the processors

 Redundant operations

 Re-definition of variables

 Communication time between processors

() ()(,)
()() (,)

n nn p
nn n p
p

 
 



 

  
 

Sequential ops: ()
Parallel ops: ()
Overhead: (,)

n
n

n p






2) Developing Parallel Programs:
Performance Evaluation

G. Hernandez - ECAR 2012 Parallel Programming Models 24

 Efficiency: It is defined as the percentage of time that p
processors are used in parallel operations.

 Scalability:
 Architecture (Hardware): Change of performance as a result of

cluster “size” increase (nodes, memory, storage, better
network, etc).

 Algorithmic: Change of performance as a result of problem
“size” increase.

 

(,)(,) 100% (,) 100%

() ()(,)
() () (,)

S

P

t n pn p n p
t p p

n nn p
p n n p n p

 

 
  

    





 

2) Developing Parallel Programs:
Performance Evaluation

G. Hernandez - ECAR 2012 Parallel Programming Models 25

 Amdahl Law:

 

(,)

() ()(,)
()() (,)

() ()(,)
()()

()
()(,) where

() ()() 1() 1

(,) (,)
1 (1)

0A

A

A A

n nn p
nn n p
p

n nn p
nn
p
n

nfn p f
n nnn

p f
pn p f

p f

p

p

n

 
 

 





 











 

  
 



 

 
 


 

  
 

 
 



Sequential fraction
of the algorithm

2) Developing Parallel Programs:
Performance Evaluation

G. Hernandez - ECAR 2012 Parallel Programming Models 26

(1) S
P S

f tt ft
p


 

() S

P

tS p
t



0

1

1lim (,)

lim (,)

lim (,) 1

Ap

Af

Af

p f
f

p f p

p f



















1 (
(

)
,

1
)A

p
f

p f
p







2) Developing Parallel Programs:
Performance Evaluation (Amdahl’s Law)

G. Hernandez - ECAR 2012 Parallel Programming Models 27

 An example:

 Let us suppose that the parallel fraction of an algorithm has

a complexity of (n)=n2/100 [s].

 And the sequential fraction (data input, results output) has a

complexity (n)=(18000+n) [s].

 If n=10000, which is the maximum speed-up according to

the Amdahl law ?
() ()(,)

()()
A

n nn p
nn
p

 




 

 
 

Amdahl law

2) Developing Parallel Programs:
Performance Evaluation Example

G. Hernandez - ECAR 2012 Parallel Programming Models 28

 
 

2

2

18000 /100
(,)

18000 /100A

n n
n p

n n p


 


 

2) Developing Parallel Programs:
Performance Evaluation Example

G. Hernandez - ECAR 2012 Parallel Programming Models 29

 Let us consider an overhead cost for n=10000 of the form:

 

(10000,) 14(10000 log 1000)[]

28000 1000000(10000,) []
100000028000 14 10000 log 1000

1028000(10000,) []
100000042000 140000 log

n p p s

n p s
p

p

n p s
p

p

 

 

 

    


 

    

 
    

2) Developing Parallel Programs:
Performance Evaluation Example

G. Hernandez - ECAR 2012 Parallel Programming Models 30

1028000(,) []
100000042000 140000 log

n p s
p

p

 
    

()p p 

 
1028000()

28000 1000000
pp

p
 



2) Developing Parallel Programs:
Performance Evaluation Example

G. Hernandez - ECAR 2012 Parallel Programming Models 31

1) Construction of the sequential program

2) Exposing parallelism by means of computation graph

3) Identification of hotspots & bottleneck by profiling

4) Partitioning design: domain and functional decomposition

5) Design and evaluation of communications

6) Performance Evaluation

7) Go Back to 3)

2) Developing Parallel Programs: Summary

G. Hernandez - ECAR 2012 Parallel Programming Models 32

 Advantages:
 Memory is scalable with number of processors. Increase the number

of processors and the size of memory increases proportionately.
 Each processor can rapidly access its own memory without

interference and without the overhead incurred with trying to maintain
cache coherency.

 Cost effectiveness: can use commodity, off-the-shelf processors and
networking.

 Disadvantages:
 The programmer is responsible for many of the details associated with

data communication between processors.
 It may be difficult to map existing data structures, based on global

memory, to this memory organization.
 Non-uniform memory access (NUMA) times.

3) Parallel Programming Models: Message
Passing - Distributed Memory

G. Hernandez - ECAR 2012 Parallel Programming Models 33

3) Parallel Programming Models: Message Passing

 Characteristics of the message passing model:
 Assignation of processes to computing nodes: statically (MPI 1.0) or

dynamically (MPI 2.0).

 A set of tasks that use their own local memory during computation.

 Multiple tasks can reside on the same physical machine as well across an

arbitrary number of machines.

 Tasks exchange data through communications by sending and receiving

messages. These communications can be point to point or collective.

 Data transfer usually requires cooperative operations to be performed by

each process. For example, a send operation must have a matching

receive operation.

G. Hernandez - ECAR 2012 Parallel Programming Models 34

#include "mpi.h"
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
int numprocs, myrank, namelen, i;
char processor_name[MPI_MAX_PROCESSOR_NAME], greeting[200];
MPI_Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
MPI_Get_processor_name(processor_name,&namelen);
sprintf(greeting, "hello, world from process %d of %d running on

%s",myrank,numprocs,processor_name);

3) Parallel Programming Models: Message
Passing - MPI Hello World

G. Hernandez - ECAR 2012 Parallel Programming Models 35

if (myrank == 0)
{

printf("%s\n", greeting);
for (i=1;i<numprocs;i++)
{
MPI_Recv(greeting,sizeof(greeting),MPI_CHAR,i,1,MPI_COMM_WORLD,
&status);
printf("%s\n",greeting);

}
}
else

MPI_Send(greeting,strlen(greeting)+1,MPI_CHAR,0,1,MPI_COMM_WORLD);
MPI_Finalize();
return 0;
}

3) Parallel Programming Models: Message
Passing - MPI Hello World

G. Hernandez - ECAR 2012 Parallel Programming Models 36

 Implementations:
 From a programming perspective, message passing implementations

comprise a library of subroutines that are imbedded in source code.
 The programmer is responsible for determining all parallelism.
 Part 1 of the Message Passing Interface (MPI) was released in 1994. Part

2 (MPI-2) was released in 1996. Both MPI specifications are available on
the web at www.mcs.anl.gov/Projects/mpi/standard.html

 MPI is now the industry standard for message passing, replacing virtually
all other message passing implementations used for production work.
Most, if not all of the popular parallel computing platforms offer at least
one implementation of MPI.

 For shared memory architectures, MPI implementations usually don't use
a network for task communications. Instead, they use shared memory
(memory copies) for performance reasons.

3) Parallel Programming Models: Message Passing

G. Hernandez - ECAR 2012 Parallel Programming Models 37

 In the threads model of parallel programming, a single process
can have multiple, concurrent execution paths.

 An analogy that can be used to describe threads is the concept of
a single program that includes a number of subroutines:
 The main program (e.g. a.out) loads and acquires all of the necessary

system and user resources to run.
 a.out performs some serial work, and then creates a number of tasks

(called threads) that can be scheduled and run by the operating system
concurrently.

 Each thread has local data, but also, shares the entire resources of a.out.
This saves the overhead associated with replicating a program's
resources for each thread.

 Each thread also benefits from a global memory view because it shares
the memory space of a.out.

3) Parallel Programming Models: Threads

G. Hernandez - ECAR 2012 Parallel Programming Models 38

 A thread's work may best be described as a subroutine within the
main program. Any thread can execute any subroutine at the same
time as other threads.

 Threads communicate with each other through global memory
(updating address locations). This requires synchronization
constructs to insure that more than one thread is not updating the
same global address at any time.

 Threads can come and go, but a.out remains present to provide
the necessary shared resources until the application has
completed.

 Threads are commonly associated with shared memory
architectures and operating systems.

3) Parallel Programming Models: Threads

G. Hernandez - ECAR 2012 Parallel Programming Models 39

 Fork-join parallelism:
 Master thread spawns a team of threads as needed.
 Parallelism is added incrementally: the sequential program evolves

into a parallel program.

Master thread

Parallel
Task 1

Parallel
Task 2

Parallel
Task 3

4 threads 2 threads3 threads
Master thread

3) Parallel Programming Models: Threads

G. Hernandez - ECAR 2012 Parallel Programming Models 40

 Implementations:
 From a programming perspective, threads implementations commonly

comprise:
 A library of subroutines that are called from within parallel source code.
 A set of compiler directives imbedded in either serial or parallel code.
 A set of environment variables.

 The programmer is responsible for determining all parallelism.
 Threaded implementations are not new in computing. Historically, hardware

vendors have implemented their own proprietary versions of threads. These
implementations differed substantially from each other making it difficult for
programmers to develop portable threaded applications.

 Unrelated standardization efforts have resulted in two very different
implementations of threads: POSIX Threads and OpenMP.

3) Parallel Programming Models: Threads

G. Hernandez - ECAR 2012 Parallel Programming Models 41

 POSIX Threads
 Library based; requires parallel coding (IEEE POSIX 1003.1c 1995).
 Most hardware vendors now offer C Language Pthreads in addition to

their proprietary threads implementations.

 Very explicit parallelism; requires significant attention to detail.

 OpenMP: Open Multi-Processing
 Compiler directive based; can use serial code.
 Jointly defined and endorsed by a group of major computer hardware and

software vendors. The OpenMP Fortran API was released October 28,
1997. The C/C++ API was released in late 1998.

 Portable / multi-platform, including Unix and Windows NT platforms .
 Can be very simple to use - provides for "incremental parallelism“.
 Microsoft has its own implementation for threads, which is not related to

the UNIX POSIX or OpenMP.

3) Parallel Programming Models: Threads

G. Hernandez - ECAR 2012 Parallel Programming Models 42

3) Parallel Programming Models: Threads
OpenMP Hello World

#include <stdio.h>
#include <omp.h>
#define Num_Threads 8 // Number of threads
int main()
{
int nprocs, nt, max_nt;
double start_time, elapsed_time;
start_time=omp_get_wtime();
nprocs = omp_get_num_procs(); // Determine number of processors
omp_set_num_threads(Num_Threads); // Setting the number of threads
nt = omp_get_num_threads(); // Determine the number of threads
#pragma omp parallel
{

printf("Hello World from thread %d of %d\n",omp_get_thread_num(),nt);
}
elapsed_time = omp_get_wtime() - start_time;
printf("Elapsed time is: %f\n",elapsed_time);
}

G. Hernandez - ECAR 2012 Parallel Programming Models 43

 Characteristics of the data parallel model:
 Most of the parallel work focuses on performing operations on a data

set. The data set is typically organized into a common structure, such
as an array or cube.

 A set of tasks work collectively on the same data structure, however,
each task works on a different partition of the same data structure.

 Tasks perform the same operation on their partition of work, for
example, "add 4 to every array element".

 On shared memory architectures, all tasks may have access to the
data structure through global memory.

 On distributed memory architectures the data structure is split up and
resides as "chunks" in the local memory of each task.

3) Parallel Programming Models: Data Parallel

G. Hernandez - ECAR 2012 Parallel Programming Models 44

 Implementations:
 Programming with the data parallel model is accomplished by writing a

program with data parallel constructs. The constructs can be calls to a
data parallel subroutine library or, compiler directives recognized by a
data parallel compiler.

 Fortran 90 and 95 (F90, F95): ISO/ANSI standard extensions to Fortran
77.

 New source code format; additions to character set
 Additions to program structure and commands
 Variable additions - methods and arguments
 Pointers and dynamic memory allocation added
 Array processing (arrays treated as objects) added
 Recursive and new intrinsic functions added

 High Performance Fortran (HPF): Extensions to Fortran 90 to support
data parallel programming.

3) Parallel Programming Models: Data Parallel

G. Hernandez - ECAR 2012 Parallel Programming Models 45

 In this model, any two or more parallel programming models are
combined.

 A common example of a hybrid model is the combination of the
message passing model (MPI) with the shared memory model
(OpenMP). This hybrid model lends itself well to the increasingly
common hardware environment of networked SMP machines.

 Another common example of a hybrid model is combining data
parallel with message passing. As mentioned in the data parallel
model section previously, data parallel implementations (F90,
HPF) on distributed memory architectures actually use message
passing to transmit data between tasks, transparently to the
programmer.

3) Parallel Programming Models: Hybrid

G. Hernandez - ECAR 2012 Parallel Programming Models 46

 SPMD is actually a "high level" programming model that can be
built upon any combination of the previously mentioned parallel
programming models.

 A single program is executed by all tasks simultaneously.
 At any moment in time, tasks can be executing the same or

different instructions within the same program.
 SPMD programs usually have the necessary logic programmed

into them to allow different tasks to branch or conditionally
execute only those parts of the program they are designed to
execute.

 All tasks may use different data.

3) Parallel Programming Models: SPMD
Single Program Multiple Data

G. Hernandez - ECAR 2012 Parallel Programming Models 47

 MPMD is actually a "high level" programming model that can

be built upon any combination of the previously mentioned

parallel programming models.

 MPMD applications typically have multiple executable object

files (programs). While the application is being run in

parallel, each task can be executing the same or different

program as other tasks.

 All tasks may use different data.

3) Parallel Programming Models: MPMD
Multiple Program Multiple Data

G. Hernandez - ECAR 2012 Parallel Programming Models 48

References

1) Dongarra, J., I. Foster (Eds.), The Sourcebook of Parallel
Computing, Morgan Kaufmann, 2002.

2) Hoffmann, K.H., A. Meyer, Parallel Algorithms and Cluster
Computing: Implementations, Algorithms and Applications,
Springer, 2006.

3) Pacheco, P., Parallel Programming with MPI, M. Kaufmann,
1997.

4) Quinn, M.J., Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, 2004.

5) Tutorial on Parallel Computing and Programming, Lawrence
Livermore National Laboratory, 2007.

