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1) Multicore Architecture

 Quad & Dual Core Intel Xeon 5400: 
Bandwidth-intensive applications, High 
Performance Clusters.

 Larger memory support: Up to 128 GB 
and 20% faster FSB (1600 MHz)

 It delivers up to 34% performance 
increase over the Intel Xeon 5300.

 50% larger multi-core optimized L2 
cache enable users to increase the 
probability of data access.

 2x bandwidth with PCI gen 2.
 Expanded power management capabilities, enhancements designed to 

reduce virtualization overhead.
 47 new Intel® SSE4 instructions which can help improve the 

performance of media and HPC applications.

Multi-core Processing
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1) Shared Memory

 Changes in a memory location generated by one processor are 
visible to all other processors.

 Shared memory machines can be divided into two main classes 
based upon memory access times: UMA, NUMA. 

 Shared memory parallel computers
vary widely, but generally have in
common the ability for all
processors to access all memory
as global address space.

 Multiple processors can operate
independently but share the same
memory resources.
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1) Shared Memory

 Advantages Shared Memory:
 Global address space provides a user-friendly programming 

perspective to memory.

 Data sharing between tasks is both fast and uniform due to the 
proximity of memory to CPUs. 

 Disadvantages Shared Memory:
 Adding more CPUs can geometrically increases traffic on the shared 

memory-CPU path, and for cache coherent systems, geometrically 
increase traffic associated with cache/memory management. 

 Programmer responsibility for synchronization constructs that insure 
correct access of global memory. 

 It is difficult and expensive to design and produce shared memory 
machines with ever increasing numbers of processors.
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 In the threads model of parallel programming, a single process
can have multiple, concurrent execution paths.

 Perhaps the most simple analogy that can be used to describe
threads is the concept of a single program that includes a number
of subroutines:
 The main program a.out loads and acquires all of the necessary

system and user resources to run.
 a.out performs some serial work, and then creates a number of tasks

(called threads) that can be scheduled and run by the operating
system concurrently.

 Each thread has local data, but also, shares the entire resources of
a.out. This saves the overhead associated with replicating a program's
resources for each thread.

 Each thread also benefits from a global memory view because it
shares the memory space of a.out.

2) Parallel Programming Models: Threads
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 A thread's work may best be described as a subroutine within the
main program. Any thread can execute any subroutine at the same
time as other threads.

 Threads communicate with each other through global memory
(updating address locations). This requires synchronization
constructs to insure that more than one thread is not updating the
same global address at any time.

 Threads can come and go, but a.out remains present to provide
the necessary shared resources until the application has
completed.

 Threads are commonly associated with shared memory
architectures and operating systems.

2) Parallel Programming Models: Threads
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 Fork-join parallelism:
 Master thread spawns a team of threads as needed.
 Parallelism is added incrementally: the sequential program evolves 

into a parallel program.

Master thread
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2) Parallel Programming Models: Threads
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3) Multicore Programming: OpenMP Basics

 Technically, a thread is defined as an independent stream of 
instructions that can be scheduled to run as such by the 
operating system. But what does this mean? 

 Imagine a main program (a.out) that contains a number of 
procedures. Then imagine all of these procedures being able to 
be scheduled to run simultaneously and/or independently by the 
operating system. That describe a "multi-threaded" program.
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3) Multicore Programming: OpenMP Basics

 Before understanding a thread, one first needs to understand a 
process. 

 A process is created by the operating system, and requires a fair 
amount of "overhead". Processes contain information about 
program resources and program execution state, including: 
 Process ID, process group ID, user ID, and group ID 
 Environment 
 Working directory. 
 Program instructions 
 Registers, Stack, Heap 
 File descriptors 
 Signal actions 
 Shared libraries 
 Inter-process communication tools (such as message queues, 

pipes, semaphores, or shared memory).
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3) Multicore Programming: OpenMP Basics

 In summary, a thread: 
 Exists within a process and uses the process resources.
 Maintains its own: Stack pointer, Registers, Scheduling properties, Set 

of pending and blocked signals, Thread specific data. 
 Has its own independent flow of control.
 Duplicates only the essential resources it needs to be independently 

schedulable 
 May share the process resources with other threads
 Is "lightweight" because most of the overhead has already been 

accomplished through the creation of its process. 
 Because threads within the same process share resources:
 Changes made by one thread to shared system resources (such as 

closing a file) will be seen by all other threads. 
 Two pointers having the same value point to the same data. 
 Reading and writing to the same memory locations is possible, and 

therefore requires explicit synchronization by the programmer. 
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3) Multicore Programming: OpenMP Basics

 OpenMP is:
 Compiler directives and clauses
 Environment variables
 Runtime environment
for multithreaded programming

 Easy to create threaded Fortran and C/C++ codes.
 Supports data parallelism and incremental parallelism.
 Combines serial and parallel code in single source.
 All threads have access to the same globally shared memory.
 Data can be shared or private. Shared data is accessible by all 

threads.
 Private data can be accessed only by the threads that owns it.
 Data transfer is transparent to the programmer. 
 Synchronization takes place, but it is mostly implicit.
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3) Multicore Programming: OpenMP Basics
Program Structure

#include <stdio.h>
#include <omp.h>
main ()  
{
int var1, var2, var3;

// Serial code // 

// Beginning of parallel section. Fork a team of threads. //

#pragma omp parallel private(var1, var2) shared(var3) // Specify variable scoping //
{

// Parallel section executed by all threads//
.

// All threads join master thread and terminate //

}  

// Resume serial code //

}
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3) Multicore Programming: OpenMP Basics
Components of OpenMP

 Directives and clauses
 Parallel regions
 Work sharing
 Synchronization
 Data scope attributes

 private
 firstprivate
 lastprivate
 shared
 reduction

 Orphaning

 Environment variables
 Number of threads
 Scheduling type
 Dynamic thread

adjustment
 Nested parallelism

 Runtime environment
 Number of threads
 Thread ID
 Dynamic thread adjustment
 Nested parallelism
 Timers
 API for locking
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3) Multicore Programming: OpenMP Directives

 Format:

 Example: #pragma omp parallel default(shared) private(beta,pi)
 General Rules:
 Case sensitive 
 Only one directive-name may be specified per directive 
 Each directive applies to at most one succeeding statement, which 

must be a structured block. 
 Long directive lines can be "continued" on succeeding lines by 

escaping the newline character with a backslash ("\") at the end of a 
directive line.
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3) Multicore Programming: OpenMP Directives
Parallel Region

 When a thread reaches a parallel directive, it creates a team of 
threads and becomes the master of the team. The master is a 
member of that team and has thread number 0 within that team. 

 Starting from the beginning of this parallel region, the code is 
duplicated and all threads will execute that code. 

 There is an implied barrier at the end of a parallel section. Only 
the master thread continues execution past this point. 
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3) Multicore Programming: OpenMP Directives
Parallel Region

 Format:
#pragma omp parallel [clause_1… clause_n]
{
// Instructions //
}

 A parallel region supports the following clauses:
 if (scalar expression)
 private (list)
 shared (list)
 default (none|shared)
 reduction (operator: list)
 copyin (list)
 firstprivate (list)
 num_threads (scalar_int_expr)

Number of processors
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3) Multicore Programming: OpenMP Directives
Parallel Region

 How Many Threads? 

The number of threads in a parallel region is determined by the 
following factors, in order of precedence: 

 Evaluation of the if clause 

 Setting of the num_threads clause 

 Use of the omp_set_num_threads() library function 

 Setting of the omp_ num_threads environment variable 

 Implementation default: Usually the number of CPUs on a 
node, though it could be dynamic. 

 Threads are numbered from 0 to (N – 1).

 Thread 0 is the master thread. 
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3) Multicore Programming: OpenMP Directives
Parallel Region

 Dynamic Threads:  Use the omp_get_dynamic() library function to 
determine if dynamic threads are enabled. 

 If supported, 2 methods are available for enabling dynamic threads: 
 The omp_set_dynamic() library routine  
 Setting of the OMP_DYNAMIC environment variable to TRUE

 Nested Parallel Regions: 
 Use the omp_get_nested() library function to determine if nested parallel 

regions are enabled. 
 Two methods available for enabling nested parallel regions are: 

 The omp_set_nested() library routine 

 Setting of the OMP_NESTED environment variable to TRUE

 If not supported, a parallel region nested within another parallel 
region results in the creation of a new team of one thread. 
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3) Multicore Programming: OpenMP Directives
Parallel Region

#include <omp.h>
#include <stdio.h>
main ()  {
int nthreads, tid;
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
if (tid == 0) /* Only master thread does this */
{

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
}  /* All threads join master thread and terminate */
} 
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3) Multicore Programming: OpenMP Directives
Work-Sharing 

 Work-Sharing Constructs
 A work-sharing construct divides the execution of the enclosed code 

region among the members of the team that encounter it. 
 Work-sharing constructs do not launch new threads 
 There is an implied barrier at the end of a work sharing construct.

 Work-Sharing Directives: 
 for: Shares iterations of a loop across the team. Represents a type of 

"data parallelism". 
 sections / section: Breaks work into separate, discrete sections. 

Each section is executed by a thread. Can be used to implement a 
type of "functional parallelism". 

 single: Serializes a section of code.
 A work-sharing construct must be enclosed dynamically within a 

parallel region in order for the directive to execute in parallel. 
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3) Multicore Programming: OpenMP Directives
Work-Sharing: for

 The iterations of the for loop are distributed over the threads

#pragma omp for clause_1 … clause_n
{
// Instructions //
}

 Threads are assigned an independent set of iterations.
 Threads must wait at the end of work-sharing construct.
 Clauses supported:
 private, firstprivate, lastprivate 
 reduction
 ordered
 schedule
 nowait
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3) Multicore Programming: OpenMP Directives
Work-Sharing: parallel region + for
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3) Multicore Programming: OpenMP Directives
Work-Sharing: sections / section

 The sections directive is a non-iterative work-sharing construct. 

 It specifies that the enclosed section(s) of code are to be divided 
among the threads in the team. 

 Independent section directives are nested within a sections 
directive. 

 Each section is executed once by a thread in the team. 

 Different sections may be executed by different threads. 

 It is possible that for a thread to execute more than one section if 
it is quick enough and the implementation permits such. 

 There is an implied barrier at the end of a sections directive, 
unless the nowait clause is used. 
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3) Multicore Programming: OpenMP Directives
Work-Sharing: sections / section

 Format:
#pragma omp sections clause_1 … clause_n
{ 
#pragma omp section
// Instructions //
#pragma omp section
// Instructions //
#pragma omp section
}

 Clauses supported:
 private(list)
 firstprivate(list)
 lastprivate (list)
 reduction (operator: list) 
 nowait
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3) Multicore Programming: OpenMP Directives
Work-Sharing: sections / section
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3) Multicore Programming: OpenMP Directives
Work-Sharing: single

 The single directive specifies that the enclosed code is to be executed 
by only one thread in the team. 

 May be useful when dealing with sections of code that are not thread 
safe (such as I/O).

 Threads in the team that do not execute the single directive, wait at the 
end of the enclosed code, unless a nowait clause is specified. 

 Format:
#pragma omp single clause_1 … clause_n
{ 
// Instructions //
}

 Clauses supported:
 private(list)
 firstprivate(list)
 nowait



G. Hernandez - ECAR 2012 Parallel Programming: OpenMP 28

3) Multicore Programming: OpenMP Directives
Synchronization: master

 The master directive specifies a region must be executed only by 
the master thread of the team. 

 No implicit barrier at end

 All other threads on the team skip this section of code.

 Format:

#pragma omp master

{ 

// Instructions //

}
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3) Multicore Programming: OpenMP Directives
Synchronization: critical

 If sum is a shared variable, this loop can not be run in parallel:
for (i=0; i < N; i++) 

sum += a[i];
 Within the critical directive all threads execute the instructions, 

but only one at a time:
#pragma omp parallel for
for (i=0; i < N; i++)
{
#pragma omp critical
sum += a[i];
}

thread 0
thread 1
thread 2
thread 3
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#include <stdio.h>
#include <omp.h>
#define N 1000
#define Num_Threads 8 // Number of threads
int main()
{
int i;
double a[N], b[N], sum=0.0, start_time, elapsed_time;
start_time=omp_get_wtime();
for (i=0; i<N; i++) { a[i]=rand(); b[i]=rand(); }
omp_set_num_threads(Num_Threads);
#pragma omp parallel for shared(sum)
for (i=0; i<N; i++)
{
#pragma omp critical

sum += a[i] * b[i];
}
elapsed_time = omp_get_wtime() - start_time;
printf("Dot product = %f and elapsed time is: %f\n",sum,elapsed_time);
}

3) Multicore Programming: OpenMP Directives
Critical Example: Dot Product
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 The barrier directive synchronizes all threads in the team: 
#pragma omp barrier

 Explicit barrier synchronization.

 When a barrier directive is reached, a thread will wait at that 
point until all other threads have reached that barrier. All threads 
then resume executing in parallel the code that follows the 
barrier. 

 The atomic directive specifies that a memory location must be 
updated atomically, rather than letting multiple threads attempt to 
write to it:

#pragma omp atomic 

3) Multicore Programming: OpenMP Directives
Synchronization: barrier, atomic
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 The ordered directive specifies that iterations of the enclosed 
loop will be executed in the same order as if they were executed 
on a serial processor. 

 Threads will need to wait before executing their chunk of 
iterations if previous iterations haven't completed yet. 

 Used within a for loop with an ordered clause 
 The ordered directive provides a way to "fine tune" where 

ordering is to be applied within a loop. 
 Format:

#pragma omp for ordered [clauses...]
{
// Instructions //
}

3) Multicore Programming: OpenMP Directives
Synchronization: ordered
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3) Multicore Programming: OpenMP Data
Shared & Private Clauses

 In a shared memory parallel program variables have a "label" 
attached to them:

 If label = “private“ the data is visible to one thread only.
Change made in local data, is not seen by others
void work(float *c, int N) 
{
float x, y; int i;
#pragma omp parallel for private(x,y)

for(i=0; i<N; i++)
{

x = a[i]; y = b[i];
c[i] = x + y;

}
}

 If label = “shared" the data is visible to all threads
Change made in global data, is seen by all others
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 shared(var1,var2,…,varn)     private(var1,var2,…,varn)

 Private variables are undefined on entry and exit of the 
parallel region.

 The value of the original variable (before the parallel region) 
is undefined after the parallel region.

 A private variable within a parallel region has no storage 
association with the same variable outside of the region.

 Use the first/last private clause to change this behaviour.

 firstprivate(var1,var2,…,varn)
 All variables in the list are initialized with the value the original object 

had before entering the parallel construct

3) Multicore Programming: OpenMP Data
Shared & Private Clauses
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3) Multicore Programming: OpenMP Data
Shared & Private Clauses
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 lastprivate(var1,var2,…,varn)
 The thread that executes the sequentially last iteration or section 

updates the value of the objects in the list

 default (none | shared) 
 none

 No implicit defaults
 Have to scope all variables explicitly

 shared
 All variables are shared
 The default in absence of an explicit "default" clause

 default(private) is not supported in C/C++

3) Multicore Programming: OpenMP Data
Last Private & Default Clauses
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 reduction(operator : list)
 The variables in “list” must be shared in the enclosing 

parallel region.
 Inside parallel or work-sharing construct:
 A PRIVATE copy of each list variable is created and initialized 

depending on the “operator”.
 These copies are updated locally by threads.
 At end of construct, local copies are combined through “operator” 

into a single value and combined with the value in the original 
SHARED variable.

3) Multicore Programming: OpenMP Data
Reduction Clause

Operand Initial Value
+ 0
* 1
- 0
^ 0

Operand Initial Value
& ~0
| 0

&& 1
|| 0



G. Hernandez - ECAR 2012 Parallel Programming: OpenMP 38

 Example:

#pragma omp parallel for reduction(+:sum)
for(i=0; i<N; i++) 
{

a[i]=rand(); b[i]=rand(); 
sum += a[i] * b[i];

}

 Local copy of sum for each thread
 All local copies of sum added together and stored in “global” 

variable
 A range of associative operands can be used with reduction
 Initial values are the ones that make sense mathematically

3) Multicore Programming: OpenMP Data
Reduction Clause
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 schedule (type [,chunk]) 
 Describes how iterations of the loop are divided among the 

threads in the team. The default schedule is implementation 
dependent. 

 If type = static 
Loop iterations are divided into pieces of size chunk and then 
statically assigned to threads. If chunk is not specified, the 
iterations are evenly (if possible) divided contiguously among the 
threads. 

 If type= dynamic 
Loop iterations are divided into pieces of size chunk, and 
dynamically scheduled among the threads; when a thread 
finishes one chunk, it is dynamically assigned another. The 
default chunk size is 1.

3) Multicore Programming: OpenMP Data
Schedule Clause
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 schedule (type [,chunk]) 
 Describes how iterations of the loop are divided among the 

threads in the team. The default schedule is implementation 
dependent. 

 If type = static 
Loop iterations are divided into pieces of size chunk and then 
statically assigned to threads. If chunk is not specified, the 
iterations are evenly (if possible) divided contiguously among the 
threads. 

 If type= dynamic 
Loop iterations are divided into pieces of size chunk, and 
dynamically scheduled among the threads; when a thread 
finishes one chunk, it is dynamically assigned another. The 
default chunk size is 1.

3) Multicore Programming: OpenMP Data
Schedule Clause
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 schedule (type [,chunk]) 
 If type = guided 

For a chunk size of 1, the size of each chunk is proportional to 
the number of unassigned iterations divided by the number of 
threads, decreasing to 1. For a chunk size with value k (greater 
than 1), the size of each chunk is determined in the same way 
with the restriction that the chunks do not contain fewer than k 
iterations (except for the last chunk to be assigned, which may 
have fewer than k iterations). The default chunk size is 1. 

 If type = runtime 
The scheduling decision is deferred until runtime by the 
environment variable OMP_SCHEDULE. It is illegal to specify a 
chunk size for this clause. 

3) Multicore Programming: OpenMP Data
Schedule Clause
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3) Multicore Programming: OpenMP Data
Schedule Clause

Loop of length 500, 4 threads
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 nowait: Threads do not synchronize at the end of the parallel loop. 

#include <omp.h>
#define CHUNKSIZE 100
main () 
{
int i, N=1000; chunk; float a[N], b[N], c[N];
for (i=0; i < N; i++) {a[i] = b[i] = (float)(i);}
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++) c[i] = a[i] + b[i];
}
}

3) Multicore Programming: OpenMP Data
Nowait Clause
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3) Multicore Programming: OpenMP Data
Runtime Environment
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Return number of threads in team
omp_get_max_threads Return maximum number of threads
omp_get_thread_num Get thread ID
omp_get_num_procs Return maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks
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 Parallelize the numerical 
integration code using 
OpenMP

 What variables can be 
shared?

 What variables need to 
be private?

 What variables should be 
set up for reductions?

1

2
0

14
1

dx
x




3) Multicore Programming: OpenMP Data
Exercise: Computing Pi
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#include <stdio.h>
#include <omp.h>
static long num_steps=100000; 
double step, pi;
void main()
{  
int i;
double x, sum = 0.0, start_time;
start_time=omp_get_wtime();
step = 1.0/(double)(num_steps);
for (i=0; i< num_steps; i++)
{

x = (i+0.5)*step;
sum = sum + 4.0/(1.0 + x*x);

}
pi = step*sum;
elapsed_time = omp_get_wtime() - start_time;
printf(“Pi = %f\n”,pi); printf(“Elapsed time = %f\n”,elapsed_time);
}

3) Multicore Programming: OpenMP Data
Exercise: Computing Pi
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